UNDERBALANCED DRILLING (UBD)

- A CASE STUDY IN INDIAN OFFSHORE
AGENDA

- Drivers for UBD Technology
- Introduction to UBD Pilot Project in India
- UBD Design and Process Flow Diagram
- UBD Project Highlights
- Recommendation's for Technology Implementation
- Why Halliburton
- Question and Answer
Underbalance Drilling Technology

Drivers for UBD

Drilling Improvement

- Reduce mud losses
- Improve ROP
- Eliminate differential sticking

Production Improvement

- Access residual reserves in mature fields
- Minimise Formation Damage
- Early Production Recovery (while drilling)
- Reduce well cleanup time
- Increase production rates

Reservoir Characterization

- Testing While Drilling
Introduction to UBD Pilot Project

- **Project**: 6 Wells Pilot Project at ONGC Western Offshore
- **Scope of Work**: To Drill & Complete 6” Drain-holes Underbalanced
- **Fields/Wells**: 3 Wells on Heera Field & 3 Wells on Mumbai High Field
- **Basis Of Design**: Technical Feasibility & FEED
 - Well/Platform Selection, Rig Selection And Survey
 - Equipment, Requisite Chemicals And Personnel As Defined In SOW
 - Base Oil as Primary Drilling Fluid (Through Drill String)
 - Concentric Casing Gas Injection (N2) Method - 7” Tieback To Surface
Project Execution Timeline

RigUp / Interwell / RigDown Days
UBD
Simplified Flow Schematic
Concentric Casing N2 Injection Methodology
It is critical that 7” liner is landed inside target carbonate layer to case off overlying shale & avoid borehole instability during UBD (HK#6H & N22#8H).

Consider geomechanical study to assess and predict borehole stability risk:

- inadvertently drilling into overlying or underlying shales
- Encountering pinch-out/lateral stratigraphic changes
- Intentionally cutting through several carbonate/shale layers to optimize layer drainage

It may be possible in some cases to utilize Managed Pressure Drilling (MPD) techniques to exceed shale collapse pressure while staying below fracture gradient.

- MPD & UBD Technologies use similar equipment and can be complementary.
UBD PROJECT HIGHLIGHTS

- First UBD project in India by any Operator.

- Vast scale of the project covering FEED, Engineering/Modelling, HAZID-HAZOP, Project Planning and Execution.

- One of the biggest setup ever used in UBD covering 4 Phase Separation System, Nitrogen Membrane Injection through Concentric Casing, HT-400 Pump, Tank Farms, Solid Waste Management, Push Pull Machine and Lower Completions using FIV.

- No HSE or SQ incident during entire preparation and execution phase.
UBD PROJECT HIGHLIGHTS

- **Drain Holes length** in the range of 190m-250m drilled in underbalanced condition in 3 Wells of Heera Field and 2 Wells of Mumbai High field.

- **Total Operating time** for Drilling Five Drain hole sections and running Lower Completion: 43 days.

- Average **ECD maintained between 3.8 and 4.5** for UB Drilling and Completions.

- Able to **identify water ingress real time** and thus place the well.

- **Consistence and Sustainable incremental Production** as per latest update.
Recommendations for Technology Implementation

- Dedicated UBD Rig – Offshore
 - Reduce multiple Rig Up/Rig Down Time
 - One time modifications required, if any
- Turnkey Project model comprising:
 - Fluids Management
 - Downhole Tools for Reservoir steering and Evaluation
 - Bits Selection
- Long Term Contracts for Onshore Economic feasibility
Recommendations for Technology Implementation on Pilot Basis

- Implement UBD in Onshore assets – Use Trailer Mounted Package
- Implement Managed Pressure Drilling (MPD) in wells with Loss/Gain Scenarios.
- Implement Pressurized Mud Cap Drilling (PMCD) in Exploration wells with severe Loss scenarios.
- $$$ Savings in terms of:
 - High Cost Drilling Mud - eliminating Mud Losses
 - High Day Rate of Drilling Rigs - reduce the Non-Productive Time
 - Complete the wells in all scenarios.
 - Smaller setup required for MPD/PMCD required
Job History for Optimized Pressure Drilling Services

GEOBALANCE - Testing & Sub Sea

<table>
<thead>
<tr>
<th>Technique</th>
<th>No. Wells</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPD</td>
<td>482</td>
<td>35%</td>
</tr>
<tr>
<td>UBD</td>
<td>175</td>
<td>13%</td>
</tr>
<tr>
<td>PMCD</td>
<td>19</td>
<td>1%</td>
</tr>
<tr>
<td>COMBINED TECHNIQUES</td>
<td>180</td>
<td>13%</td>
</tr>
<tr>
<td>N2</td>
<td>143</td>
<td>11%</td>
</tr>
<tr>
<td>RCD?</td>
<td>362</td>
<td>27%</td>
</tr>
</tbody>
</table>

Onshore/Offshore

<table>
<thead>
<tr>
<th>Onshore/Offshore</th>
<th>No. Wells</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onshore</td>
<td>926</td>
<td>68%</td>
</tr>
<tr>
<td>Offshore</td>
<td>329</td>
<td>24%</td>
</tr>
<tr>
<td>Other (i.e. manmade island)</td>
<td>106</td>
<td>8%</td>
</tr>
</tbody>
</table>

Region

<table>
<thead>
<tr>
<th>Region</th>
<th>No. Wells</th>
<th>%</th>
<th>HPHT Wells</th>
<th>HPHT % *</th>
<th>HPHT % **</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>126</td>
<td>9%</td>
<td>46</td>
<td>15%</td>
<td>37%</td>
</tr>
<tr>
<td>ESSA</td>
<td>30</td>
<td>2%</td>
<td>2</td>
<td>1%</td>
<td>7%</td>
</tr>
<tr>
<td>LA</td>
<td>773</td>
<td>57%</td>
<td>137</td>
<td>44%</td>
<td>18%</td>
</tr>
<tr>
<td>MENA</td>
<td>145</td>
<td>11%</td>
<td>0</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>USA</td>
<td>287</td>
<td>21%</td>
<td>125</td>
<td>40%</td>
<td>44%</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>1361</td>
<td>100%</td>
<td>310</td>
<td>23%</td>
<td></td>
</tr>
</tbody>
</table>

* % Based on all wells drilled Globally

** % Based on all wells drilled in each Region
THANK YOU